Face Recognition Using Multi-feature and Radial Basis Function Network

نویسندگان

  • Su Hongtao
  • David Dagan Feng
  • Rongchun Zhao
چکیده

In this paper, a face recognition algorithm using multi feature and Radial basis Function Network (RBFN) is proposed. The algorithm consists of three steps. In the first step, a coarse classification is performed using Fourier frequency spectrum feature, and only the first k gallery images with minimum Euclidean distance to the probe image are retained. In the second step, the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) features of frequency spectrum are extracted, which will be taken as the input of the RBFN in the third step. In the last step, the classification is carried out by using RBFN. The proposed approach has been tested on ORL face database and Shimon database. The experimental results have demonstrated that the performance of this algorithm is much superior to the other algorithms on the same database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Multi-features and Multi-stages RBF Neural Network Classifier with Fuzzy Integral in Human Face Recognition

This paper presents a high accuracy human face recognition system using multi-feature extractors and multi-stages classifiers (MFMC), which are fused together through fuzzy integral. The classifiers used in this paper are Radial Basis Function (RBF) neural network while feature vectors are generated by applying PZM, PCA and DCT to the face images separately. Each of the feature vectors are sent...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Multilayer Perceptron, Radial Basis Function Network, and Self–organizing Map in the Problem of Face Recognition

In this contribution, one and two-stage neural networks methods for face recognition are presented. For two-stage systems, the Kohonen self-organizing map is used as a feature extractor and multiplayer perceptron (MLP) or radial basis function (RBF) network are used as classifiers. The results of such recognition are compared with face recognition using a one-stage multilayer perceptron and rad...

متن کامل

Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

In this contribution, human face as biometric [1] is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002